

Gedae Trace Table Users

Manual

February 2008

Address: Gedae, Inc.
 1247 N Church St, STE 5

 Moorestown, NJ 08057
Telephone: (856) 231-4458
FAX: (856) 231-1403
Internet: www.gedae.com

http://www.gedae.com/

1 Preface... 3

2 Introduction ... 4

3 Trace Event Filtering .. 6

4 Getting Trace Information from Non-Responsive Processors 10

User Creation of Dump Files to View Trace and other Debug Information from a

Target Executable that is not responding. ... 10

Automatic Creation of Dump Files to View Trace and other Debug Information from a

Target Executable that is not responding. ... 12

5 Unmapped Trace Memory .. 13

6 User Settable Data Trace Probes ... 14

7 Saving Trace Information to Comma Delineated File .. 18

Saving the Trace Table Information ... 18

Event File Format ... 19

Index File Format .. 20

1 Preface

This document is an evolving document that presents various features of the Gedae Trace

Table. While not complete at this time, we will add descriptions of new features as they

are developed and also incrementally add descriptions of all the existing trace table

features.

2 Introduction

The Gedae Trace Table allows users to view a timeline of the execution of an application

graph. Events that are displayed include primitive execution including send and receive

primitives, dynamic queues filling and emptying, change of static schedule thread state,

segment boundaries added to queues and segment state of static schedule thread. Trace

information is given on both a per processor basis and on a per primitive basis. A typical

trace table is seen below:

In the above picture the top three lines represent a summary of the trace activity on the

partitions named src, channel, and sink. The remainder of the trace table shows a more

detailed breakdown of the activity on these three processors, including primitive firings

(like the fft_filter), Schedule state changes (like sink.Schedule1) and queues filing an

emptying (like the queue demod.decide<in).

Using the trace table the user can determine why a graphs throughput is limited, get

statistics on box firings, determine interprocessor communication delays, see primitives

blocked waiting for I/O and analyze deadlock situations.

3 Trace Event Filtering

Trace event filtering reduces the amount of trace information that is collected allowing

users to see longer execution time spans with smaller trace buffers. When the trace table

is displayed the user will only see events that affect the dataflow behavior of the graph

making it easier to debug dataflow problems. The user can turn on trace event filtering

by starting Gedae with the –tf command line argument as for example:

gedae –file demo/comm./e_comm –pa default –gr embedded –tr –tf –r

The events that are filtered out are the execution of primitives that cannot fail and thus

add no information about the dataflow behavior of the application. Primitives like the

automatically inserted send and receive primitives that can block are still recorded. And

I/O primitives that can poll or pause waiting for an interrupt are also recorded. But boxes

like the vx_fft, add, and m_mult that will fire as long as their input is available are not

recorded. The two trace tables below show the advantage of using event filtering. The

first table shows the demo/comm./e_comm graph running without event filtering:

As can be seen the “sink” partition has overwrapped its trace buffer so all the events

cannot be seen. Also the events such as the fft_filter that do not affect dataflow occupy a

good deal of the vertical table space.

Below is the same trace table collected with the –tf parameter added to the command

line:

As can be seen the sink partition can now display a full 2 seconds of trace information

with the same size buffer that could only display about 0.6 seconds of trace inforation.

Also the trace table is a good deal smaller and easier to analyze. The user can still see the

order that boxes execute within a given schedule by clicking on the schedule (For

example Schedule 1 above) and selection Options->Display Schedule from the Trace

Table menu.

4 Getting Trace Information from Non-
Responsive Processors

User Creation of Dump Files to View Trace and other Debug
Information from a Target Executable that is not responding.

Being able to view trace and other debug information from target executables that are not

responding to commands from the development environment is possible if the target BSP

allows it. This section describes how to view the trace information if the BSP requires

the user to be involved in dumping memory from the target processor.

There are two ways that Gedae can detect that a partition is not responding. One way is

that the Gedae Development Environment can no longer send a command to the target

partition. In this case Gedae reports:

Another way is that the Gedae Development Environment does not receive a response

from the target processor after a timeout period. In this case the user is asked to keep

trying.

If the user is convinced that the non-responsive partition will not be able to respond and

answers No to the above dialog then Gedae displays the following dialog asking the user

to dump the trace information to a set of files.

The Memory Dump Table and Partition Info Tables printed to the terminal are:

The above table tells the user to create two binary files. The first one should contain the

200000 bytes beginning at the sink processes base address 0x00430048. The second

should contain 6272 bytes beginning at the sink processes base address 0x00460d90.

Once these files are created according to the instructions printed to the terminal after the

Memory Dump Table the user responds Yes to the above dialog and Gedae will then be

 Memory Dump Table

 Base

 Partition: Address Bytes Filename

 sink: 0x00430048 200000 embedded/e_comm_1/DUMP_sink_1

 : 0x00460d90 6272 embedded/e_comm_1/DUMP_sink_2

 Partition Info Table

 Physical Executable

 Partition: Processor Pathname

 sink: local embedded/e_comm_1\ent\exec-sink

To dump the memory requested in the Memory Dump Table, for each

partition in the Partition Info Table dump the memory between

<base_addr> and <base_addr>+<bytes> to <filename> where:

 <filename> is the Filename from the Memory Dump Table

 <base_addr> is the Base Address from the Memory Dump Table

 <bytes> is the value of Bytes from the Memory Dump Table.

able to display the trace table. If the user responds Yes to the above dialog but the files

were not created or were incorrectly created then the following dialog is displayed giving

the user an additional chance to create the dump files.:

Replying No at any time will cause the Trace Table to be displayed with the memory

partitions that were responding.

Automatic Creation of Dump Files to View Trace and other
Debug Information from a Target Executable that is not
responding.

Some BSPs can create dump files of requested partition memory blocks without

cooperation of the partitions target process. This feature supports getting the information

needed to view the Trace Table of unresponsive partitions. When this feature is enabled

if a partition is not responding as indicated by the dialog:

If the user answers no the memory needed to view the trace information will be extracted

without cooperation of the partition process.

5 Unmapped Trace Memory

On the Cell B.E. processor each target processor (SPU) has only 256kbytes of memory.

Since this small amount of memory must be used for program and data memory this often

leaves little memory available for collecting trace events. To extend the trace memory a

new feature has been added that allows the user to allocate the trace buffer in off chip

system memory. To use this new feature the user needs to set the Map Partition Table

field Trace MemType to an unmapped memory type. For example in the Map Partition

Table viewed below the Cell SPU processors all have there memory types set to sysmem

which is the name given to the unmapped system memory for the Cell BSP. The Trace

Size has been set to 32768 which requires 655360 bytes of memory – well over twice

what would have been available in all of the SPUs on chip memory.

The unmapped memory trace table implementation is quite efficient. It uses a small

double buffer of trace events on the target processor. When a buffer is filled a DMA

transfer is kicked off to move the on chip trace events into system memory. This DMA

transfer occurs rarely, is done in the background, and is of a relatively small amount of

data compared with the amount of data transferred by the running application. As a result

using unmapped memory has little impact on performance.

6 User Settable Data Trace Probes

A user can cause an application to be created that adds circular data trace buffers to any

point in the application graph. These circular buffers keep a record of all data that passes

through a static schedule thread, a primitive or a primitive input or output on the graph.

While the graph is running the user can dump the data trace buffers for analysis with

tools outside of Gedae.

To create data trace buffers the user must add a file to the <fgpath>/probes/<application

path> directory that describes the probes where

<fgpath> is the path to the flow graph libraries directory. On Windows <fgpath> is the

value given by the environment variable %fgpath%. On linux and solaris <fgpath> is

typically the FGlibraries directory that is directly under the directory from which you run

gedae.

<application path> is the path to the toplevel application under <fpath>/boxes. It is the

path to the file that you open to load the toplevel graph.

For example if the graph that is running is demo/comm./e_comm then a file default can

be added to

<fpath>/probes/demo/comm./e_comm/default

The probe point description file contains any number of lines of the form:

<probe type> <probe identifier> <N>

Where <probe type> is one of:

Proc Type Description

schedule create buffer for all data ports in schedule of size to record N executions of

schedule

box-exec create buffer for all inputs and outputs of box of size tokens produced by N

executions of box

box-fire create buffer for all inputs and outputs of box of size tokens produced by N

firings of box

data-exec create buffer for data of size tokens produced by N executions of parent

box

data-fire create buffer for data of size tokens produced by N firings of parent box

data-tokens create buffer for data of size N tokens

The <probe_identifier> identifies which schedule, box or data the probe or probes are to

created for. For the schedule type the identifier is the full application name of any

primitive in the schedule. For the two box types the identifier is the full application name

of the primitive. And for the three data types the identifier is the full application name of

the primitives data port.

The following is a probe file for the demo/comm./e_comm application.

box-exec modulator.x_osc 10

box-fire e_channel.add 10240

schedule char_encode.unpack 1024

data-tokens char_decode.diff_decode>out 1024

The probe file is loaded either using the –probes gedae argument list parameter as

gedae –file demo/comm./e_comm –probes default

Or it is set using the toplevel application graph menu option:

Application->Open Probe Points

The probe points must be set before the application is compiled by the Gedae graph

compiler. They can not be set once the application has been created and is running. To

dump the probe points from a running application the user selects the menu item:

Application->Dump Probe Points

The user will be prompted for a directory in which the probe point dump files is to be

created with the dialog:

The user should enter the directory that the probe files should be created in and the select

OK. Gedae will create the director path if necessary and dump the probe files and a

probe file dictionary to that directory. For example for the e_comm demo using the

example probe file shown above the following files are created:

> pwd

/cygdrive/c/gedev/user/nt/probes/e_comm

> ls -l

total 2581

-rwxr-xr-x 1 Kerry None 2048116 Jan 14 16:09 d_probe_1

-rwxr-xr-x 1 Kerry None 427 Jan 14 16:09 dictionary

-rwxr-xr-x 1 Kerry None 1136 Jan 14 16:09 probe_1

-rwxr-xr-x 1 Kerry None 41074 Jan 14 16:09 probe_2

-rwxr-xr-x 1 Kerry None 41074 Jan 14 16:09 probe_3

-rwxr-xr-x 1 Kerry None 430194 Jan 14 16:09 probe_4

-rwxr-xr-x 1 Kerry None 8304 Jan 14 16:09 probe_5

-rwxr-xr-x 1 Kerry None 10353 Jan 14 16:09 probe_6

-rwxr-xr-x 1 Kerry None 10353 Jan 14 16:09 probe_7

-rwxr-xr-x 1 Kerry None 1135 Jan 14 16:09 probe_8

-rwxr-xr-x 1 Kerry None 41074 Jan 14 16:09 probe_9

The dictionary describes which probe file goes with which data element. For this graph

the dictionary is:

probe_1: e_comm.char_decode.diff_decode>out

probe_2: e_comm.e_channel.add>out

probe_3: e_comm.e_channel.norm_noise>out

probe_4: e_comm.modulator.x_osc>out

probe_5: e_comm.char_encode.unpack>out

probe_6: e_comm.char_encode.addstart_stopbits>out

probe_7: e_comm.char_encode.diff_encode>out

d_probe_1: e_comm.modulator.oqpsk_mod>out

probe_8: e_comm.char_encode.unpack.recv_1>out

probe_9: e_comm.e_channel.add.recv_2>out

The probe files contain information in the following format

base_type = <bt>

ndims = <ndims>

dim1 = <dim1>

dim2 = <dim2>

dim3 = <dim3>

dim4 = <dim4>

typesize = <typesize>

tokens_in_buf = <tokens_in_buf>

tokens_in_stream = <tokens_in_stream>

<binary data>

Where

<bt> is the base type and is an integer value from 1 to 5 where 1 is a char, 2 is a short, 3

is an int, 4 is a float and 5 is a double.

<ndims> is the number of dimensions that the token type contains (0 for scalar token, 1

for vector, 2 for matrix, 3 for 3d matrix and 4 for 4d matrix)

<dim1>, <dim2>, <dim3> and <dim4> are the size of each of the 4 dimensions and are

only printed out up to the number of dimensions of the token.

<typesize> is the number of bytes in the base type.

<tokens_in_buf> is the number of tokens recorded to the file

<tokens_in_stream> is the total number of tokens that have passed through this data

stream. Only the last <tokens_in_buf> tokens that have passed through the stream will

be recorded to the file.

<binary_data> is the binary data that contains the values of the <tokens_in_buf> number

of tokens. It should have the size <typesize> * <tokens_in_buf> * <dim1> * <dim2> *

<dim3> * <dim4> for 4 dimensional tokens and similarly for lower dimensional tokens

removing the unused dimensions..

For example probe_4 which is the complex x_osc output has the preamble:

base_type = 4

ndims = 0

typesize = 8

tokens_in_buf = 53760

tokens_in_stream = 166656

Note that though the base type is 4 (float) the typesize is 8 because each complex value

consists of two floats. The preamble is followed by 8*53760 bytes of data.

7 Saving Trace Information to Comma
Delineated File

The trace table event information can be saved to a set of comma delineated files that

completely describe the information in the trace table. These files are easily parsed and

are can be used as inputs to third party offline analysis tools of the trace information. The

comma delineated files can also be easily ready into Microsoft Excel.

Saving the Trace Table Information

To save the trace table information the user must first bring up a Gedae Trace Table for

the running application. The user then selects the trace table menu item File->Save

Comma Delineated File.

The user is then prompted to supply the name of the file to be created

The user can either type a new filename or can select one of the filenames without the ind

suffix. Two files will be created: the event file and the index file. The files are saved in

the %fgpath%\cd_events\<graph_path> directory (on NT) and the

FGlibraries/cd_events/<graph_path> directory on linux and unix systems. The

<graph_path> is the pathname of the toplevel graph in the FGlibraries boxes

subdirectory.

Event File Format

Each line of the event file contains the following fields:

Field Type Description

group int the number of the Gedae group the event belongs to

part string the partition within the group the event belongs to

etype string the entity type – (box, queue, sched or peer)

index int the entities index – see the Index File

type string the event type

time1 double time stamp at which event begins

time2 double time stamp at which event ends (for interval events)

amount int granularity of box events

words of queue event

firings of peer events

acc int accumulated value of amount

total number of times box fired for box events

total number of tokens processed for queue event

does not apply to peer events

segment int segment number of event

state string schedule state value

retry int true if schedule retry flag set

lock int true if schedule is locked

level int segmentation level of peer event

number int number of user event

value int or double value of user event

The first four fields uniquely identify the entity being traced. The entities name can be

looked up using these four fields in the index file. Not all fields apply to all event types.

Fields that do not apply are either indicated by commas with no data between or by an

end-of-line occurring before the field is printed.

Index File Format

The index file relates the indices in the event file to the named entities in the gedae

application. The index file contains five comma separated columns which are:

Field Type Description

group int the number of the Gedae group the event belongs to

part string the partition within the group the event belongs to

etype int the entity type (box, sched, queue or peer)

index int the enties index

name string the full trace table name of the entity

The first four fields correspond to the first four fields in the event file. The trace table

name is a period separated list of names that provides a hierarchical name for the event.

Box, Queue and Peer event names contain the group and schedule names that the event

belongs to. Using this information the events can be placed in the context of the static

schedule thread to which the event belongs.

